
1

Re-imagining Cooperative Co-Evolution: Modular
Genetic Algorithms

Yaron Strauch
Re-written university coursework from my MSc Artificial Intelligence

Abstract—Genetic Algorithms are heuristic computer simu-
lations that find parameter configurations in complex search
spaces by modelling evolution by artificial selection. Cooperative
co-evolution was adapted from nature in 1994 to improve the
speed of finding a solution of genetic algorithms by maintaining
sub populations with competing specialised individuals. This
work shows that the original paper, claiming that co-evolution
speeds up the problem, appears to be mainly faster because
it decomposes the problem. A modular genetic algorithm is
presented that engineers a genome from multiple parents and has
the same performance as its co-evolutionary counterpart without
maintaining sub populations on the original fitness landscapes.

I. BACKGROUND

Optimisation problems can be formalised as a space of
possible variable configurations and some measure of how
good these configurations perform, either an error function
subject to minimisation or a fitness function subject to max-
imisation. When search spaces grow too big to be explored
comprehensively, stochastic methods can find configurations
that are good enough.

One possible way is doing so through a hill climber, a
simple algorithm which ascends the fitness gradient to find
maxima, however its greedy ascend may get stuck on local
rather than global optima depending on the fitness landscape.

Another way to find good parameter configurations are
Genetic Algorithms (GAs), which evolve parameter configu-
rations by imitating evolution by natural selection. Possible
solutions are represented by a population of genomes which
code for individuals, each representing one particular config-
uration of variables. GAs let individuals compete with each
other by evaluating them on a fitness function. Individuals
are selected proportionally to their fitness score for genetic
operations such as mutation and crossover. Mutations are
small, random, undirected changes to the genome; crossover
re-combines two good parental genomes into a child genome,
hopefully re-combining good features from two genomes into
one, allowing faster convergence than using a hill climber. Due
to reproduction being relative to fitness, the population as a
whole converges towards an optimal solution. [1]

A sub type of GAs are co-evolutionary GAs, as introduced
by Potter and De Jong introduced in 1994 [2]. Competitive co-
evolution models relationships like predator/prey, i.e. a deer
that needs to survive predators in order to be more fit than
its competitors in its same sub population (i.e. species), while
cooperative co-evolution models symbiotic relationships like
bees and flowers that need to adapt to each other in order
to reproduce. When modelling co-evolutionary systems, the
fitness of an individual is not generated objectively, rather

it can only be generated together with other species that it
needs to adapt to, no matter if competitively or cooperatively.
Individuals only compete genetically with individuals from
their own sub population, effectively increasing competition
within the same role. Potter and De Jong introduced CCGA1
(Cooperative Co-evolutionary Genetic Algorithm 1) [2], which
is the foundation of many co-evolutionary algorithms today. In
this context individuals within a cooperative evaluation have
exactly one gene, representing one variable on a fitness land-
scape. Each sub population contains individuals competing for
this one variable in their fitness landscape.

To evaluate individuals, the authors use four multi-
variable optimisation functions, namely Rastrigin, Schwefel,
Griewangk and Ackley. Since they represent errors, the algo-
rithm is supposed to minimize the error and find the global
minimum. Figure 1 illustrates the landscapes for two variables
each instead of the 20, 10, 10, and 30 variables respectively
that the algorithms are evaluated on in this work.

Fig. 1. Error landscapes with 2 variables.

In Potter and De Jong’s work, it is important to realise
that they moved two steps at once when moving from a
standard GA to CCGA1: They introduced modularity and co-
evolution at the same time. While co-evolution is not possible
without decomposing modular problems (how would one split
a population into sub populations when the problem is not
decomposable?), it is possible to introduce modularity in
optimisation algorithms without the need to co-evolve (as will
be demonstrated in this work).

Does the performance gain of CCGA1 over the standard

2

GA on these landscapes rely mainly on modularity, or is its
cooperative design of sub populations the main driver?

II. METHODS

To answer this question, Potter and De Jong’s paper is
reimplemented and compared to a modular GA which exploits
decomposability without cooperative evolution.

Genes on the genome represent one variable on the fitness
landscape. Individuals in the non-cooperative GAs have one
gene for every variable, individuals in CCGA1 have exactly
one gene and are split into sub populations, one for each
variable.

Each gene consists of 16 bits and represents a real number
x within the applicable ranges of each landscape (details in
appendix A). Fitness-proportionate selection with a scaling
window of 5 and conversion from bitstring to numbers was
implemented as described by Bäck and Schwefel [1]. Mutation
of a genome is implemented as a bit-flip of every allele with a
probability of 1 / chromlength. Two-point crossover is applied
to an individual with a probability of 0.6.

A. Standard GA

The standard GA only exploits modularity when re-
combining two individuals via crossover. Each individual has
n genes corresponding to the number of variables in the fitness
landscape.

1) Initialise population P of 100 random individuals, each
with n genes

2) Repeat until a solution was found or 100,000 function
evaluations reached:

a) Evaluate fitness for each individual in P
b) Create new generation P ′ which holds the best

individual from P (elitism).
c) Repeat until P ′ has 100 individuals:

i) Select one individual from P according to
fitness

ii) With a probability of 0.6, perform two-point
crossover with second selected individual

iii) Apply mutation (bit-flipping)
iv) Append to P ′

d) Discard old population (P = G)

B. Cooperative Co-Evolution GA (CCGA1)

CCGA1 exploits modularity by having n sub-populations,
each population representing one variable in the fitness land-
scape. Individuals are evaluated together with the best indi-
viduals from the previous generation.

1) Initialise best population B of one random individual
per sub population, each one gene

2) Initialise n sub populations each with 100 random indi-
viduals, each one gene, and group them into population
P ⊃ B

3) Repeat until a solution was found or 100,000 function
evaluations reached:

a) Evaluate cooperative fitness for each individual in
P by combining it with the remainder from B

b) Create new generation P ′ from P using elitism,
two-point crossover and mutation

c) Update B to contain the best individual per sub
population from P ′

d) Discard old generation (P = G)

C. Modular GA
The Modular GA introduced in this work exploits modu-

larity in the same way CCGA1 does without maintaining a
cooperative sub population. 99 of 100 individuals are created
by the same process as the Standard GA. The 100th individual
is generated by exploiting modularity; its genome is puzzled
together from other individuals and therefore exploiting mod-
ularity in the problem.

This puzzling process is not done randomly, instead each
gene’s fitness is estimated. Similar to CCGA1 evaluating one
individual by combining it with the best individuals from
the other sub populations (called B), the 100th individual is
created by selecting n good individuals and evaluating one
gene at a time by joining it with the remaining genes of the
best individual. The score of the combined genome is assumed
to be the score of the selected gene. After evaluating all the
genes, it builds one combined genome with all the best genes
found, maintaining genome ordering.

The whole algorithm therefore works like this:
1) Initialise population P of 100 random individuals, each

with n genes
2) Repeat until a solution was found or 100,000 function

evaluations reached:
a) Evaluate fitness for each individual in P
b) Create a new generation P ′ of 99 individuals using

elitism, two-point crossover and mutation
c) Select the genome Gb from the best individual of

P
d) Select n parent candidates C from P ′ according to

fitness
e) For every parent candidate c ∈ C with genome Gc:

i) Concatenate an evaluation genome per allele a:
Ge[c, a] = Gb[1 : a − 1] + Gc[a] + Gb[a + 1 :
n]; 1 <= a <= n

ii) Evaluate Ge on the fitness function f
f) Combine the best gene found per allele: G′

b[a] =
argmax(f(Ge[c, a])); 1 <= a <= n

g) Add an individual with the combined genome G′
b

to P ′

h) Discard old generation (P = G)
The authors from CCGA1 defined the mutation probability

p to be 1 / chromlength. For 16 bits, this means that the
Standard GA mutates with p = 1

16n and CCGA1 uses p = 1
16

because the cooperative individuals only have one gene. If
one tries to compare an algorithm without sub populations
to CCGA1, they should adapt this mutation rate to have
comparable results. The Modular GA therefore uses a mutation
rate of p = 1

16 . All other parameters remain the same.

III. RESULTS

Figure 2 compares the Standard GA, CCGA1 and the
Modular GA averaged over 50 runs. As expected from their

3

0 25000 50000 75000 100000
function evaluations

0

10

20

30

40

be
st

in
di
vi
du

al
er
ro
r

RastriginLandscape

0 25000 50000 75000 100000
function evaluations

0

100

200

300

400

be
st

in
di
vi
du

al
er
ro
r

SchwefelLandscape

0 25000 50000 75000 100000
function evaluations

0

2

4

6

8

be
st

in
di
vi
du

al
er
ro
r

GriewangkLandscape

0 25000 50000 75000 100000
function evaluations

0

4

8

12

16

be
st

in
di
vi
du

al
er
ro
r

AckleyLandscape

StandardGA
CCGA1
ModularGA

Fig. 2. The Modular GA is almost indistinguishable from the Cooperative
GA

publication, CCGA1 performs considerably better than the
standard GA. The Cooperative GA and the Modular GA are
almost indistinguishable from each other, except for Ackley
where the Modular GA performs even better than CCGA1.

For Rastrigin and Schwefel there is no clear winner, on
Griewangk the CCGA1 and on Ackley the Modular GA is a
bit faster. The differences are minimal.

IV. DISCUSSION

A. Reimplementation
The pseudo code in the original paper specifies the GA to

first generate a new generation, and then to perform genetic
operators (which includes two-point crossover) on the new
generation. While for mutation this description makes sense,
performing crossover on a population needs more explaining.
The paper specifies that the population is fixed at size 100
and does not describe replacement strategies for individuals
that result from crossover. The Schwefel paper does specify
to replace one individual at random [1], but this would mean
that the elitist individual could be replaced. From the graphs
it becomes obvious that the error never goes up and therefore
the elitist individual must not be replaced. This is why the
reimplementation applies crossover during the creation of the
new generation and not after.

The reimplementation of both the standard GA and CCGA1
(figure 2) comes very close to the original paper [2, Fig.
3]. The Standard GA converges slightly slower in the reim-
plementation, this might have to with subtle differences in
the implementations such as bitstring to float conversion or
float precision, or the aforementioned population management
issues.

B. Technical Comparison
The general idea of the Cooperative GA (evaluating genes

by slicing them out and evaluating them in the context of

the best individual) has been adapted. But there is an im-
portant difference: CCGA1 works with sub populations and
directly competing individuals, the Modular GA works on
one population with indirectly competing genes. There is no
sub population, so every individual competes with everybody.
There is therefore no notion of co-evolution.

Looking at the score, both CCGA1 and the Modular GA
outperform the Standard GA. The performance gain of exploit-
ing modularity by using decomposability on function optimis-
ing algorithms is therefore clear, at least for the landscapes
investigated: By exploitation of the decomposability of the
problem, it got easier to solve. Between CCGA1 and the
Modular GA there is not a clear winner, two experiments are
nearly identical, and the other two are split 50/50.

Can we therefore say that CCGA1 performs well not
because it uses sub populations but because it exploits modu-
larity? Well certainly on these theoretical error landscapes.

Technologically, the recombination process in the Modular
GA is more like a directed multi-point crossover. Directed
because each gene is selected according to fitness from a pool
of n parent candidates, and multi-crossover because each gene
might come from a separate individual. This is conceptually
very different to random mutation or random crossover. Is
it cheating because 1) this one individual takes many parent
candidate evaluations and 2) only the best genes are cherry-
picked? I would argue no, because 1) the comparison uses
function evaluations on the X axis which will cover any
additional candidate evaluations, and 2) the cherry-picking is
equal to the artificial selection performed in any GA. The
selective pressure per-gene is higher in this version, but that
is not necessarily a good or bad thing.

C. Semantic Comparison

The main appeal of GAs, and by extend cooperative co-
evolution, is the simulation of what we observe in nature.
By modelling this as true to what we assume to be reality,
one might hope to achieve similar complex results, and any
deviation from what we know (i.e. having more than two
parents) might feel wrong. The approach here instead ge-
netically engineers the genome by re-combining it surgically,
decomposing it into genes, estimating fitness per gene, and re-
engineering it together. One might judge the CCGA1 approach
as more ”natural” and in contrast this new approach ”intrusive”
and ”artificial”. These sentiments are obviously misplaced as
the whole system is artificially engineered and synthetic. The
notion of evaluating one individual together with the best
individuals from a previous generation is equally absurd, if
not more.

The notion of cooperation of CCGA1 versus the re-
combination of multiple parental genomes in the Modular
GA is more related than it might seem. If a number of
parent candidates are being re-combined by evaluating and
re-combining their best treats, they are also cooperating as the
offspring contains the best features of its parents. Co-evolution
in the real world is highly complex, and the borders between
cooperative and competitive co-evolution are not always clear
to draw. As individuals in a GA have no intent or will, in the

4

end it doesn’t really matter if they are grouped into some sub-
population to compete with another, or if they are surgically
recombined.

The big emerging question is now, how many other pro-
cesses of GAs have we engineered to be ”true” to nature,
which simulations could have been improved, and did we miss
any shortcuts?

APPENDIX A
LANDSCAPES

A. Rastrigin Landscape
Rastrigin has local minima that get higher the further away

they are from the global minimum.

f(x) = 3n+

n∑
i=1

x2i − 3cos(2πxi)

n = 20;−5.12 <= xi <= 5.12

xmin = (0, 0, ...)

f(xmin) = 0

B. Schwefel Landscape
Schwefel has a second-best minimum far away from the

global minimum. Note that the original paper incorrectly
specified xmin = (420.9687, 420.9687, ...) which is actually
the maximum.

f(x) = 418.9829n+

n∑
i=1

xisin(
√
|xi|)

n = 10;−500 <= xi <= 500

xmin = (−420.9687,−420.9687, ...)
f(xmin) = 0

C. Griewangk Landscape
Griewangk has a product term to introduce interdependen-

cies between variables.

f(x) = 1 +

n∑
i=1

x2i
4000

−
n∏

i=1

cos(
xi√
i
)

n = 10;−600 <= xi <= 600

xmin = (0, 0, ...)

f(xmin) = 0

D. Ackley Landscape
Ackley is very rugged (ruggedness increases with n).

f(x) = 20 + e− 20exp

−0.2
√√√√ 1

n

n∑
i=1

x2i


−exp

(
1

n

n∑
i=1

cos(2πxi)

)
n = 30;−30 <= xi <= 30

xmin = (0, 0, ...)

f(xmin) = 0

REFERENCES

[1] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,” Evolutionary computation, vol. 1, no. 1, pp.
1–23, 1993.

[2] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in International Conference on Parallel Prob-
lem Solving from Nature. Springer, 1994, pp. 249–257.

	Background
	Methods
	Standard GA
	Cooperative Co-Evolution GA (CCGA1)
	Modular GA

	Results
	Discussion
	Reimplementation
	Technical Comparison
	Semantic Comparison

	Appendix A: Landscapes
	Rastrigin Landscape
	Schwefel Landscape
	Griewangk Landscape
	Ackley Landscape

	References

