
Privacy in Social Networks
Bachelor thesis in the course of studies

Media Informatics

Submitted by Yaron Strauch at Stuttgart Media University on July 17th,
2016, to obtain the academic degree of Bachelor of Science

First examinator: Prof. Walter Kriha
Second examinator: Sebastian Luxem

Copyright c©2016 Yaron Strauch

1

Statutory Declaration, Eidesstattliche Erklärung
Hiermit versichere ich, Yaron Strauch, ehrenwörtlich, dass ich die vorliegende Bachelo-
rarbeit mit dem Titel: “Privacy in Social Networks” selbstständig und ohne fremde Hilfe
verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen
der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen wurden,
sind in jedem Fall unter Angabe der Quelle kenntlich gemacht. Die Arbeit ist noch nicht
veröffentlicht oder in anderer Form als Prüfungsleistung vorgelegt worden.

Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrechtlichen
Folgen (§26 Abs. 2 Bachelor-SPO (6 Semester), § 24 Abs. 2 Bachelor-SPO (7 Semester),
§ 23 Abs. 2 Master-SPO (3 Semester) bzw. § 19 Abs. 2 Master-SPO (4 Semester
und berufsbegleitend) der HdM) einer unrichtigen oder unvollständigen ehrenwörtlichen
Versicherung zur Kenntnis genommen.

Ort, Datum Unterschrift

2

Abstract, English
Online Social Networks (OSNs) are heavily used today and despite of all
privacy concerns found a way into our daily life. After showing how heavy
data collection is a violation of the user’s privacy, this thesis establishes
mandatory and optional requirements for a Privacy orientated Online Social
Network (POSN). It evaluates twelve existing POSNs in general and in regard
to those requirements. The paper will find that none of these POSNs are able
to fulfill the requirements and therefore proposes features and patterns as a
reference architecture.

Abstract, German
Soziale Online-Netzwerke sind trotz aller Datenschutz-Bedenken in unserem
Alltag fest verwurzelt. Nachdem gezeigt wurde, dass Datensammeln ein
Angriff auf unsere Privatsphäre darstellt, werden in dieser Abschlussarbeit
obligatorische und optionale Anforderungen an ein privatsphärenorientiertes
soziales Online-Netzwerk gestellt. Anschließend werden zwölf soziale Online-
Netzwerke generell und hinsichtlich dieser Anforderungen evaluiert. Als
Ergebnis wird festgestellt, dass keines dieser Netzwerke die Anforderungen
erfüllen kann, und es werden Techniken und Strukturen vorgeschlagen, um
eine Referenz-Architektur zu entwickeln.

3

Contents

Contents
1 Motivation 5

2 Research questions 7

3 Requirements for POSNs 8
3.1 Mandatory requirements for POSNs . 8
3.2 Optional requirements for POSNs . 10

4 Analysis of existing approaches for POSNs 12
4.1 POSN projects . 12

4.1.1 Diaspora . 12
4.1.2 Safebook . 15
4.1.3 PeerSoN . 18

4.2 Existing Frameworks for POSNs . 20
4.2.1 FOAF . 20
4.2.2 A Security API by Backes et al. 22
4.2.3 Lockr . 24
4.2.4 Persona . 27
4.2.5 The social network scheme proposed by Sun, Zhu, and Fang 30

4.3 Enhancing privacy within existing OSNs 32
4.3.1 flyByNight . 32
4.3.2 NOYB . 34
4.3.3 FaceCloak . 36
4.3.4 Scramble . 39

4.4 Interim result . 41

5 Proposed architecture for POSNs 41

6 Conclusion 46

Appendices 47
A. Evaluation table . 48
B. List of figures and tables . 50
C. References . 51

4

1 Motivation

1 Motivation

Online Social Networks (OSNs), as defined by Boyd and Ellison [1], allow users to create
profiles, add users as friends1, visit profiles of other users, and send messages either
privately or publicly. As this definition matches a variety of OSNs, the author decided
to mainly concentrate on the OSN with the most active user count, which at this time2

is Facebook [3].
So how does Facebook deal with data and how does this behavior affect the privacy

of its users?
Shortly, Facebook collects all data of its users. Data can be shared willingly or recorded

via analytics software on Facebook itself, on connected devices, or on any external web
site that uses Facebook services like a comment box or a share button [4, What kind
of information do we collect?]. They don’t only collect data from registered users, but
from any third party users are interacting with. That means even data from unregistered
users is collected and combined, resulting in much greater information value than users
shared willingly.

The resulting data is not only used for Facebook’s core services such as messaging
and communication feeds, but also for personalized advertising of Facebook and all of
its partners [4, How is this information shared?]. Facebook claims not to share data
that “personally identifies you [...] like name or email address that can by itself be used
to contact you or identifies who you are”. This phrasing allows Facebook to share even
very sensible personal information like birth date, work places or GPS data with other
companies.

One could argue that users entered their data willingly into the system and therefore
decided to share this data with Facebook. But data that was recorded on Facebook
applications or even third party websites was not entered willingly. Additionally one
cannot regulate what information other users share about oneself.

But more importantly one cannot regulate what new data is inferred. There are
algorithms that allow Facebook or third parties to infer both identifying and additional
information that was neither recorded via analysis nor explicitly entered by the user. A
development team was able to infer “with as little as 20% of the users providing attributes
[...] the attributes for the remaining users with over 80% accuracy” [5]. Michel Kosinski
et al. were able to predict very private information with a high accuracy such as sexual
orientation, religion, political views, intelligence, or happiness solely based on Facebook
likes [6]. Other attacks use the Facebook group memberships of a victim [7] or mutual

1 This paper uses the term friend in the same way as current social networks do: Besides of what friend
commonly refers to, they also categorize other contacts one interacts with such as family members
or co-workers as friend.

2 It is unclear if Facebook will keep this position since a (heavily criticized) study from 2014 predicted a
massive decrease in Facebook usage [2]. But because today one and a half billion users use Facebook
regularly [3] this paper will use Facebook as a reference.

5

1 Motivation

friends [8] to reveal one’s identity or personal information.
So Facebook and other companies are able to generate new data that a user never

shared willingly and that may be very sensitive and private. But since the data doesn’t
personally identify the user, it is shared with every associated company.

Since people cannot control what data their contacts share about themselves, which
information may be inferred, and what data is recorded, the system becomes untranspar-
ent and uncontrollable. Users may change privacy settings in order to hide information
from other users. But this seems more like the illusion of privacy. A study showed
that “Most users do not seem to realize that restricting access to their data does not
sufficiently address the risks resulting from the amount, quality and persistence of the
data they provide” [9]. In other words, changing privacy settings within Facebook does
not affect sharing data with Facebook or any associated company [4].

Most users don’t seem to be aware of the value of their private information. A study
that evaluated a questionnaire on more than one thousand people tried to figure out
how much money people value their Facebook data. It showed that nearly half of them
valued their data as 0 EUR [10]. All evaluated participants chose to spend between
0 EUR and 150 EUR, where the average would spend between 5 EUR and 15 EUR.
This study shows that people either don’t understand or ignore the fact that Facebook
generates billions from the data they provide [11]. Plus they don’t know what possible
value inferred data may have.

Past events already showed that even unremarkable data may have a great impact on
one’s life. In 2009 an insurance company stopped paying a depressed woman after seeing
a photo where she seems to have fun [12].

One may argue that data collection is part of Facebook’s effort to increase user ex-
perience. And some might find it acceptable that their data is collected and processed
through face recognition, location tracking, and user behavior recording. But there are
services and algorithms completely unrelated to social networks that definitely don’t
increase user experience within an OSN. For example, Facebook registered a patent for
an algorithm calculating credit ratings using the social graph [13]. That means if your
friends are considered uncreditworthy, your own financial credibility is ranked down.
Facebook may even calculate credibility through profile, image, and location analysis.
If users do not want to be ranked based on their social profile, they cannot opt out or
object without deleting their whole account.

If personal data was encrypted in such a way that Facebook was not able to read it, all
those leaks and attacks on the user’s privacy would be impossible. The users, unaware
of the real value of their data, could be protected against privacy violations by a fully
encrypted OSN.

Generally privacy and encryption are closely related. In a report to the Human Rights
Council, David Kaye pleads for the use of encryption and anonymity tools [14]. He states
that it was “recognized that privacy is a gateway to the enjoyment of [...] the freedom
of opinion and expression” and derives that “Surveillance systems, both targeted and

6

2 Research questions

mass, may undermine the right to form an opinion, as the fear of unwilling disclosure
of online activity, such as search and browsing, likely deters individuals from accessing
information”. For Kayle, secure communication “may be the only way in which many
can explore basic aspects of identity, such as one’s gender, religion, ethnicity, national
origin or sexuality”.

Since 2015 almost 20% of Internet usage belonged to Facebook [15] and social networks
are essential tools to explore what Kayle calls “basic aspects of identity”, the need for a
fully encrypted social network should be obvious and an important goal to achieve.

2 Research questions
This thesis will discuss the following research questions (RQs):

1. What are mandatory requirements for a Privacy orientated Online Social Network
(POSN)?

2. What are additional criteria that are not necessary, but nice to have?
3. a) Is there already a POSN that fulfills the given requirements?

b) If not: How can one approach a POSN with the given requirements?

Method
Requirements are considered essential if they are needed to guarantee privacy or data
integrity3. Because a POSN needs to have a chance to compete with current OSNs
like Facebook, requirements are also considered essential if they are needed to oppose
Facebook.

This list of requirements is a proposition and not required to be comprehensive. It is
merely a starting point for RQ3 in order to provide a base to evaluate existing software.
It is possible that the list will change after the evaluation phase.

3 In order to simplify readability, the term data integrity is used to refer to authenticity as well

7

3 Requirements for POSNs

3 Requirements for POSNs

3.1 Mandatory requirements for POSNs

End to end encryption

The core of an OSN is messaging. Messages are either public (announcements of official
pages such as companies), one to one (private, direct messages), or one to many (status
updates, profile comments). Public messages are not needed to be encrypted.

If a message is not considered public, there is always a fixed set of recipients. In a
private message there are two people communicating and no one else should be able to
decrypt it. If someone posts a status update, every contact of the sender is a recipient
and therefore only contacts should be able to decrypt it.

End to end encryption implies that only the recipient is able to decrypt the message.
The decryption needs to take place on the client, not on the server. Keys must not be
stored anywhere but on client side. The server must not be able to decrypt data or see
any plain text.

Data integrity

Every message, whether sent publicly or privately, needs to be signed. The recipient
needs to check the signature in order to ensure that no man in the middle attacks took
place. This may be achieved by a CA system, but since a social network is built on
people trusting each other in real life, a decentralized trust system may be a better
choice. For users that don’t know much about encryption, a simple system to state
possible security breaches in an understandable way (like a traffic light system) must
be integrated. Trusting or untrusting people need to be easy. A proposition would be
to present a list of friends that already trust the new party, allowing the user to judge
based on already established trust. Another option may be a QR validation code for
trusting new parties, as the encrypted instant messenger Threema is currently using.

Usability

To compete with Facebook, a POSN needs to be as intuitive and as easy as familiar
tasks like using Facebook or installing flash player. If a program needs the users to use
a command shell, install multiple software dependencies, research bugs, or understand
what asymmetrical cryptography means, the system would be far behind Facebook and
couldn’t compete. Instead, good usability patterns are needed. Software needs to be self
explanatory and have sufficient user documentation.

8

3 Requirements for POSNs

Mobile Friendly
Since mobile devices are as common as desktop devices and faster growing [16], a mobile
app or at least a mobile optimized, well functioning web client is needed. Whether the
mobile device acts as a server (in a peer to peer network) or if it depends on a machine
to synchronize with needs to be discussed using a concrete software. If it is a native
application, it should be be installed like any other ordinary application.

Consistency
What consistency models are to be expected?

Twitter uses two models, it can take both eventual and strong reads [17], where strong
reads follow the consistency model of sequential ordering of per-object updates. Sequen-
tial ordering of per-object updates means that as if two writes occur after each other,
first setting X=1 followed by X=2, a reader may read (1,1), (1,2) or (2,2), but never
(2,1).

Facebook uses a consistency model called “Existential Consistency” [18]. They claim
“Overall Facebook’s design provides per-object sequential consistency and read-after-
write consistency within a cache, and eventual consistency across caches [...] we expect
most of them [user’s sessions] to receive per-object sequential and read-after-write con-
sistency”. While this guarantees a sequential consistency for interactions between people
that are geographically close to each other and therefore on the same cache, it also means
that people farer away experience eventual consistency.

Both networks claim that eventual consistency leads to anomalies not suitable for
social networks [17, 18]. Therefore it is mandatory to have a stronger consistency model
than eventual consistency, at least for people geographically close to each other.

Availability
Availability is one of the key requirements for websites in general. A social network and
all of its components such as news feed or chat should always be available to the user.
It is not acceptable if some services were completely disabled due to offline hosts.

9

3 Requirements for POSNs

3.2 Optional requirements for POSNs

Open Source
The debate if Open Source increases security has not ended yet. There are multiple
papers analyzing if Open Source increases security and some come to the conclusion that
it is not dependent on whether code was published or not, but rather on the number of
reviewers that looked into the code, how skilled they are, and how well structured the
code is [19, 20, 21]. If those reviewers look into opened or closed source code seems not
to matter. Therefore this thesis will see Open Source as an optional requirement.

Distribution
Facebook’s expenses in 2011 were 860 Million USD [22]. When the system is not able
to generate money using the user’s data, how can servers and bandwidth be financed?
Some of the discussed OSNs are distributed in a peer to peer manner, allowing to use
every user’s machine and reduce server cost. Other projects are distributed onto different
servers, allowing do distribute resources and therefore cost among multiple owners.

Another advantage of a fully distributed network would be data access since a hacker
wasn’t able to monitor all the traffic (meta-)data. In a paper of Amre Shakimov et al.,
three categories of decentralized OSNs are described [23]. The first one is storing the
personal data on a highly available cloud storage. The second approach uses the user’s
machine and the machines of trusted friends of the user, being cheaper because no cloud
service is required, but not as available as the first approach. The third approach is a
hybrid system between these two.

As long as the data is encrypted, all three models are acceptable in a distributed sys-
tem, always with the trade off between availability and cost. If data is fully encrypted,
a distributed storage is not necessarily needed. This is why this thesis considers distri-
bution as an optional requirement.

There is, however, a problem with heavily distributed peer to peer systems and mobile
devices. Today mobile devices have got limited traffic volume, network speed, disk and
battery capacity, and computing performance compared to desktop computers. Since all
these factors will further increase in the future, it may be that at some day they will be
a regular part of peer to peer systems. Further evaluation of this thesis is not part of
this paper and may fill a whole other future study.

10

3 Requirements for POSNs

Obfuscated Social Graph
Whilst an end to end encryption is mandatory, it may not be possible to encrypt every
information. For example in a classic peer to peer application there is a master server
that knows about which IP belongs to which user id. But hiding the social graph at
least partially or obfuscating it would be a great security improvement, since it protects
against the mutual friend attack [8].

Optional identity validation
Kayle argues “anonymity may liberate a user to explore and impart ideas and opinions
more than she would using her actual identity” [14]. But at the same time users of a social
network need a mechanism to verify one’s identity. Facebook validates users using their
mobile phone number. Such a central authority to validate identities could be counter
productive to the idea of minimizing centralism. There are, however, possibilities to
verify users in a decentralized manner, such as trust chains. An optional verification
system would satisfy both the need for anonymity and the need to verify one’s contacts.
A decentralized validation system is preferred.

11

4 Analysis of existing approaches for POSNs

4 Analysis of existing approaches for POSNs

How to approach a POSN? In section 4.1 this paper will examine projects that designed
POSNs as a whole, followed by section 4.2 discussing existing frameworks to build POSNs
on. Finally in section 4.3 it will analyze projects that enhance privacy within already
existing OSNs.

4.1 POSN projects

4.1.1 Diaspora

Features
Diaspora [24] is a heavy distributed OSN with focus on privacy.

Users create their account within a pod, meaning a server in a peer to peer network.
They can decide if they want to join a pod or if they want to create a pod on their
machine.

A pod works very much like an email server. Users register to a pod, receive a unique
identifier ending with @<server address>, and may communicate with both, users on
the same pod and users on other pods. Email servers from different providers only
synchronize data when needed, for example when an email is sent between them. In the
same way the diaspora network does not synchronize in a mirroring manner, but only
partially on demand. Pods synchronize content with each other using a direct HTTPS
connection.

Messages are either shared publicly or addressed to aspects that allow the user to
comprehend what data is visible to others. In the same manner the news feed may be
filtered using aspects.

In contrast to Facebook, Diaspora doesn’t want its users to identify themselves with
a real identity. They may use pseudonyms to use diaspora in an anonymized way.

Evaluation
Diaspora does not encrypt its data in an end to end manner. While most Diaspora servers
use HTTPS and therefore ensure only client to server encryption, it is even possible to
use it only with HTTP. However, private messages are encrypted between two pods using
PGP [25]. Note that this is not an end to end encryption, but an encryption between
the two pods. The pods may even store the private messages in plain text. Even though
diaspora provides better privacy because data is not saved on a central machine but in
a decentralized manner, a pod owner is still able to look into the plain texts.

Registering to a pod and using diaspora is not complicated and as easy as using
Facebook. Setting up a pod, however, needs time and administrative skills. Ordinary
users don’t know about how to set up a database, web server, reverse proxy, and HTTPS
certificates, meaning creating a pod is a rather huge obstacle for an ordinary user. This

12

4 Analysis of existing approaches for POSNs

results in pods with over 10.000 users. If users register without creating a new pod they
may pick from a list of pods or let the diaspora system pick a pod for them.

The Social Graph is not shared with users or other pods. Only one or two the re-
quired pod administrators and users know who the user shares information with. This
works because sharing is asymmetrical, which means there are no friend requests like in
Facebook. A user may share content with a second user without acquiring permissions.

The aspect system creates very transparent communication channels and is a great
step into an easy to use privacy management. Users are always aware who they are
sharing posts with without complicated privacy settings we currently find on Facebook.

Diaspora is open sourced and heavily updated for security fixes [26].
Since a pod owner is able to read every message from its users and there are pods

with thousands of active users it should be discussed if diaspora’s model solves privacy
violations. A pod owner could still eavesdrop on private messages. Of course the po-
tential power of administrators is reduced due to the distributed model, but it is not
eliminated. Even users that have their own pod are not safe from privacy violations,
because their personal data is synchronized to all the pods their contacts use. If one
contact they are interacting with is registered to a malicious4 pod, their private profile
and every message sent to that specific user may be monitored by that pod. Since there
is no end to end encryption the users have no chance to protect themselves against such
violations. Users are required to trust their pod owner and the owner of every pod owner
their contacts are registered on.

Diaspora uses a lose trust chain. Assuming every user trusts their pod owner and
every user trusts their contacts, they claim this means every user trusts every pod owner
of their contacts. This would be viable if everyone had a private or trustworthy (e.g.
family only) pod and protects it against attackers and malicious software. But since a
normal user is neither able to create a pod, defend it against attackers, nor understand
the impact of who to trust (and maybe just picked a pod randomly), this trust chain
does not work.

4 In this paper the term malicious is used not only for evil attackers, but for formerly trustworthy,
compromised servers as well

13

4 Analysis of existing approaches for POSNs

Table 1: Criteria evaluation of Diaspora

Mandatory Requirements

Criterion Outcome

End to end encryption No

Data integrity No

Usability Usage: Easy
Administration: Hard

Mobile friendly Mobile optimized Web Page. No native application

Consistent High

Available Pod needs to be always online

Optional Requirements

Criterion Outcome

Open Source Yes

Distributed Multiple servers

Obfuscated Social Graph Pod Administrator sees contacts

Identity validation No

14

4 Analysis of existing approaches for POSNs

4.1.2 Safebook

Features

At the time this paper was written, safebook was still in development. All information
relies on a concept of the development team [27].

Safebook is an encrypted, peer to peer social network. Its key feature is a trusting
network based on real life trust, where each user is represented by a node. Such nodes
stand not only for a user in the social network, but also for a host node in the Internet
and a peer node in a peer to peer network.

Figure 1: A Matryoshka

Fr
ie

nd
sh

ip

In
te

rm
ed

ia
te

 S
he

ll
s

O
ut

er
 S

he
ll

In
ne

r
Sh

el
l

D
ir

ec
t c

on
ta

ct
s

Entry

Mirror

Core

Mirror

Data is saved and routed in matryoshkas (See Figure 1), a structure to both mirror
data and obfuscate routes in the network. A matryoshka consists of a user’s node (core)
and multiple other nodes built at multiple layers (shells) around it. All paths between
nodes are based on a real life trust relationship. Messages hop along those paths, similar

15

4 Analysis of existing approaches for POSNs

to IP packets. The innermost shell around the core represents direct contacts of the
user and a subset of its nodes replicate the core’s data in an encrypted storage. On
the outermost shell there are nodes that represent entry points to the core and act as
gateways to the user.

As long as the user’s server is online it will handle all requests itself. If it is offline,
data is served by one of the replicas from the innermost shell.

Safebook uses a trusted identification service to give nodes unique identifiers. Even
though being implemented as a central service, it only receives a hash over personal
data to generate these ids and therefore is not a security issue to the network. It cannot
decrypt data or even get meta data on information sent between clients. It may be
implemented in a decentralized manner as well.

Evaluation
End to end encryption is implemented via asymmetrical encryption. Safebook generates
two key pairs on the client side. The first keypair is the pseudonym keypair, used to
encrypt and sign routed messages between the nodes of every hop. The other keypair is
called node keypair, ensuring an end to end encryption and verification. So both criteria,
end to end encryption and data integrity, are matched.

Safebook specifies all communication should be handled by the owner’s node if possi-
ble. If the node is offline, the node’s replicas serve the information. Real life components
like the chat function must be served through the owner’s node and become deactivated
if the owner’s node is offline. This means not every function is available all the time and
therefore the availability requirement is not matched.

Since safebook is not released yet, it is not possible to analyze usability. A mobile
client is not yet implemented and it is not mentioned if there is one in development. It
may be difficult to implement a mobile client as long as it is specified that all real life
communication must be handled by the user’s node.

The authors of safebook did not write anything about the consistency model. As long
as there is no prototype or source, one may only speculate on the consistency model.
Since safebook relies on a distributed peer to peer system, the author assumes it to be
eventual consistent.

Because only close friends are used to mirror data and ordinarily close friends are
geographically close to each other, availability might not be given at night since their
personal computers don’t run.

The matryoshkas fulfill the optional requirement of an encrypted social graph very
well. Only close friends can contact each other and entry points for other people are
given, but an attacker can never know or learn the whole social graph.

Safebook is a very promising and fascinating concept for POSNs. It eliminates pri-
vacy issues by design and focuses on encryption and obfuscation. It is unknown how
performant and reliable an implementation will work, how usable it will be or how to

16

4 Analysis of existing approaches for POSNs

implement a mobile client. Without a prototype or a public proof of concept everything
is built on speculation. Since 2010 the authors of safebook didn’t publish new articles or
released a prototype, it is in question if safebook is still in development or ever released.

Table 2: Criteria evaluation of Safebook

Mandatory Requirements

Criterion Outcome

End to end encryption Yes; Trust chains built on real life trust

Data integrity Yes

Usability Unknown

Mobile friendly No

Consistent Unknown; eventual consistent?

Available Not when host and close friends are offline

Optional Requirements

Criterion Outcome

Open Source No

Distributed Peer to peer

Obfuscated Social Graph Yes

Identity validation Not natively

17

4 Analysis of existing approaches for POSNs

4.1.3 PeerSoN

Features
PeerSoN [28] is a prototype for an encrypted peer to peer OSN.

As many peer to peer systems, PeerSoN consists of a centrally managed lookup service,
currently implemented with open Distributed Hash Table (openDHT), and the peer to
peer network serving the user data.

The prototype focused on distribution and not on encryption. The developers propose
to use a public key infrastructure or a hybrid encryption. Currently every user owns a
private key, the key distribution is not discussed.

Each user is identified by a globally unique ID (GUID) which is currently implemented
as a hash of the user’s email address. Each user may be logged in on different machines
(locations). Those locations and their online state are saved onto the lookup service,
allowing other users to request if and where the user is currently logged in. When a user
wants to receive updates from another user, a request to the DHT is sent to read the
index file of the required user’s profile. The index file contains links to all file names
that in sum are the user’s profile. The DHT returns which machine from the peer to
peer network is able to serve the latest version of that index file and which version the
file is on. The machine serving the file doesn’t need to be the owner of that file.

PeerSoN uses asynchronous messages in order to provide services even when a client is
offline. In the prototype this is implemented within the DHT. Saving the messages into
the DHT is not considered a security thread as messages are always encrypted using the
recipient’s public key.

Evaluation
PeerSoN is only a prototype and therefore the developers did not implement access con-
trols. Further they documented problems with openDHT. Asynchronous messages that
are saved onto openDHT are capped to a maximum length of 800 characters, they are
deleted after a week, and the openDHT may be slowed down when malicious clients
perform a DDOS attack. Despite OpenDHT being technically decentralized, they docu-
mented that it is provided by a third party and therefore owned in a centralized manner.
Due to that logical centralization it hold by a single third party and contradicts a heav-
ily distributed system. The developers think about implementing a specialized DHT
specifically for PeerSoN. This should be not a big problem since the DHT only serves
meta data such as IP addresses and therefore the implementation may be changed easily
to another distributed storage.

The project was built with mobile clients in mind, they designed the direct connections
to end immediately after the file transfer finished in order to save data volume. Mobile
devices don’t need to serve content either and future security measures may include that
clients can deny connections during the handshake to prevent the download of big files.

The developers documented problems in view of availability and heavy disk usage due

18

4 Analysis of existing approaches for POSNs

to the need of heavy data mirroring. PeerSoN is not finished, but it documents how
hard it is to build an OSN on top of current peer to peer systems.

Table 3: Criteria evaluation of PeerSoN

Mandatory Requirements

Criterion Outcome

End to end encryption Yes; Key distribution is not implemented

Data integrity Yes

Usability Unknown

Mobile friendly Yes

Consistent Messages are delivered instantly or eventually

Available Medium to High

Optional Requirements

Criterion Outcome

Open Source No

Distributed Peer to peer

Obfuscated Social Graph Unknown

Identity validation Not natively

19

4 Analysis of existing approaches for POSNs

4.2 Existing Frameworks for POSNs

4.2.1 FOAF

Features
FOAF [29] is a technical architecture to provide POSNs. In contrast to current OSNs
that serve HTML/CSS/JS it proposes to build a decentralized and open network that
serves raw data. FOAF means Friend-Of-A-Friend and describes a file that stores the
contacts of a user.

A user is represented by a Web ID, which is a URI to point to the user’s FOAF file on
a server the user trusts. In the FOAF file all contacts are listed with their Web ID. This
provides different users to reside on different servers and still be friends. Because the
FOAF file also provides URIs for interactions like reading or writing posts, users may
even use multiple servers to serve their profile.

Every server may implement access control measurements like openID themselves,
making the system highly flexible. Different access control may even lead to features
Facebook doesn’t provide like collaborative editing or write-only mail in-boxes.

Since FOAF itself is a formatting language it is not sufficient for users, they need a
viewer to interpret and display the FOAF files and to interact with other users. The
developers included a FOAF Pane into a Firefox extension called Tabular, whose last
release was in 2008 and therefore is not compatible to current Firefox versions.

Evaluation
This project is seemingly not under development nor runnable since 2008, but it is a
good example for alternative architectural patterns for POSNs. The framework is built
very flexibly and allows applications to build new components. For example the FOAF
file may include public keys to enable end to end encryption. But FOAF is more a
proposition on how to manage distribution, it doesn’t implement a native encryption,
and it is not a usable prototype for a POSN.

20

4 Analysis of existing approaches for POSNs

Table 4: Criteria evaluation of FOAF

Mandatory Requirements

Criterion Outcome

End to end encryption No

Data integrity No

Usability Low

Mobile friendly No

Consistent High

Available Servers needs to be always online

Optional Requirements

Criterion Outcome

Open Source No

Distributed Multiple servers

Obfuscated Social Graph No

Identity validation Not natively

21

4 Analysis of existing approaches for POSNs

4.2.2 A Security API by Backes et al.

Features
In 2011, Backes, Maffei and Pecina presented a cryptographic framework to build POSNs
with [30].

Each user is represented by a pseudonym. A pseudonym is created using a one-way
function over a random value and used to authenticate a client using a zero-knowledge
proof. This ensures that no other user may impersonate the pseudonym and that a
client may prove to be some identity without the need to reveal it. The API provides
basic tasks like establishing a friendship relation, posting a comment, and requesting an
image. All requests are possible without the need to reveal the user’s identity.

The API provides methods to establish a relation, receive file handlers, and to read
or write to a file.

A relation may be direct (i.e. friendship relation) or indirect (i.e. friend of a friend).
The indirect relation allows clients to use a specific friend to send a message to a mutually
exclusive friend of this friend. Authentication may be provided revealing the pseudonym,
using an already established relation, or anonymously. The authenticator may decline
certain methods, for example in a common OSN an anonymous authentication might be
unwanted.

All communication consists of either zero-knowledge proofs (bound to a receiver to
prevent impersonation attacks) or encrypted messaging. This means all messages at-
tackers may sniff are either with no value for them or encrypted.

Evaluation
The underlaying architecture needs a public key infrastructure and an anonymous chan-
nel, which both are not part of the framework. For key validation it is possible to create
a key infrastructure based on a CA, a web of trust, or a manual verification system. For
the anonymous channel the developers propose to use onion rings or mix nets. For a
deeper analysis it should be measured how such an anonymous channel affects response
times and if it slows down the network.

The lose coupling of those elements provides a very flexible framework for different
use cases. The API may be used not only for POSNs, but for anonymous, private,
collaborative forums.

Because access control is implemented in such a way that servers don’t need to save
their contact’s pseudonym, a hacked server doesn’t reveal the identities of the user’s
contacts. The network doesn’t restrict the usage of pseudonyms, allowing a user to
create and interact with multiple pseudonyms. This increases privacy since a user may
use different pseudonyms for different use cases and interactions, which makes the user
harder to trace and therefore increase privacy.

Every API call needs a zero-knowledge proof, which means those proofs need to be fast.
The framework implements

∑
zero-knowledge proofs that only rely on three messages

22

4 Analysis of existing approaches for POSNs

(commitment, challenge, response [31]) and fast hashing algorithms.
Since the API calls are mainly handled directly between two communicating hosts, the

consistency is high. But this also means that if the data owner is offline, availability is
reduced. It is possible that calls via indirect relations may be used to increase availability.

Table 5: Criteria evaluation of Backes et al.

Mandatory Requirements

Criterion Outcome

End to end encryption Yes; A public key infrastructure is needed

Data integrity Depends on underlaying key infrastructure

Usability Unknown

Mobile friendly Unknown

Consistent High

Available Unknown; low to medium

Optional Requirements

Criterion Outcome

Open Source No

Distributed Multiple servers

Obfuscated Social Graph Yes

Identity validation Explicitly not intended

23

4 Analysis of existing approaches for POSNs

4.2.3 Lockr

Features
Lockr [32] decouples private information from other OSN features like content delivery.
The developers want the user to be able to chose a trustworthy OSN provider to store
their private data and still be able to use features of other OSNs. If the users don’t
trust any OSN provider to host their data they are able to set up a host themselves.
The decoupling of data providers and OSNs means that they don’t need to register on
and input their data into different OSNs. For example, today users have different kinds
of content like videos, photos, dating, or blogging. For those use cases they register on
different OSNs where they need to enter all their private data again. With Lockr they
can place their data on one trustworthy host and grant or limit access to OSNs. They
may write a central access policy that is used by all OSNs to unify access control.

Parallel to the security API by Backes et al, Lockr uses zero-knowledge protocols.
Lockr describes relationships via social attestations, which are signed XML files to de-
scribe a relationship such as ‘friend’. A post is always related to a social access control
list that defines the relationship to the publisher a reader needs.

That means that if person A is registered to one OSN and person B is registered to
another OSN, they may receive each others’ data only by providing the social attestation
and are not required to register an account at the other OSN. When two users that don’t
know each other but assume they share a mutual friend want to speak with each other,
of course without the need to reveal any of their information (zero-knowledge), they may
use an encryption key bound to a relationship to that mutual friend. Only if they indeed
share that friend they may decrypt each others’ messages.

Lockr uses decentralized peer to peer systems such as BitTorrent to distribute content
without CDNs. They implemented Lockr into an already existing BitTorrent client and
created social torrents, a torrent that may only be downloaded when a correct attestation
is provided.

Revocation is handled using three approaches: Through expiration dates, exclusion
lists within the access control, and new attestations that state the new relationship.

Evaluation
Using a central server for hosting personal data and linking other OSNs to it is a concept
already discussed in FOAF. But FOAF didn’t specify how access control is handled, each
server may implement access control itself. Lockr wants to specify unified access control
based on zero-knowledge protocols. Both projects show that it may be a good idea
to rethink about the general organization structure of current OSNs and that a lose
coupling may increase privacy drastically. Using zero-knowledge protocols gives users
the ability to establish a secure connection with each other just by having a mutual
friend, a feature that is missing in FOAF (despite the name).

Besides the BitTorrent implementation, they implemented a prototype in the cen-

24

4 Analysis of existing approaches for POSNs

tralized OSN Flickr and tried to show that their system is very flexible. For Flickr
they programmed a FireFox plugin that communicates with their proxy server. Flickr
corresponded to the trusted OSN that holds private data, their server represented the
content provider. But this design means that the OSN provider Flickr is still able to
access every content of the user, which is not the desired result. For every photo a user
uploads they upload a dummy photo publicly and the real photo set as private. Private
photos are viewable only by having the appropriate link. Their proxy server would han-
dle authentication and provide the hidden link only to clients that are allowed to view
it. Because they couldn’t implement the zero-knowledge proof at the client side, they
sent the attestation directly to their server. This is a huge security violation since the
proxy server may reuse the attestation to authenticate itself as the user. In result both
servers, Flickr and proxy server, may violate or ignore the access policy of the user. In
addition every authenticated user receives the hidden link and may distribute it using
other channels. Therefore the implementation may be breached by every participant
and is not considered to be useful.

25

4 Analysis of existing approaches for POSNs

Table 6: Criteria evaluation of Lockr

Mandatory Requirements

Criterion Outcome

End to end encryption No

Data integrity No

Usability Unknown

Mobile friendly No

Consistent High

Available Storage server needs to be always online

Optional Requirements

Criterion Outcome

Open Source No

Distributed Multiple servers

Obfuscated Social Graph Yes

Identity validation Handled by OSN

26

4 Analysis of existing approaches for POSNs

4.2.4 Persona

Persona [33] is a distributed network relying on a distributed storage system. It uses a
hybrid encryption that consists of a ciphertext-policy attribute-based encryption (CP-
ABE) and traditional public keys.

ABE gives the user the ability to create a policy that specifies attributes a reader
needs in order to decrypt the data. Only when readers have the specified combination
of attributes, they are able to decrypt the file. This allows the files to be stored publicly,
even on untrusted servers. In Persona, attributes mainly represent groups like ‘close
friends’, ‘co-workers’, or ‘programmers’. Because ABE allows logical operators, a post
may then be encrypted for attribute combinations, joined with logical operators or in-
equality signs. Attributes may also describe the key generation date. An example for
an access relation:

keyYear < 2016 ∨ (co-worker ∧ programmer)

The author of a post does not need to know who exactly is able to decrypt the data.
It is possible to create a message and encrypt it for friends of a friend without actually
knowing who exactly matches this access policy. This works if the group creator shares
the group attribute names with the members of the group. It is even possible to give
users a private key that matches the required attributes after the message was encrypted
without the need to change the cipher text.

Every user creates an ABE public key and an ABE master secret key. Users may then
categorize their contacts and therefore generate each friend a private ABE attribute
secret key including the given attributes.

Persona was prototypically implemented using a Facebook app, but it used old Face-
book app permissions and is not usable today.

Evaluation
Parallel to diaspora, sharing is asymmetrical, meaning only the sender defines a group

of recipients, the recipients don’t need to accept a membership. But unlike diaspora,
Persona can ensure that only the recipients may read the file through encryption. Even
when a server is compromised only the desired recipients are able to decrypt the files.

Since group management is a pattern already found in Facebook or diaspora, protect-
ing it with a very similar encryption method makes the application very transparent,
trustworthy and understandable. It ensures the data is really only readable by the
configured recipients and not by the owners of the application.

Technically, parts of the features may be accomplished without ABE. A client may
generate a key for each group (i.e. a symmetric key) and distribute it securely to the
members of that group (i.e. using their public key). The key is cached on every par-
ticipant’s machine and messages may be exchanged securely. When a symmetric key is
used, new users may be added easily to the group even after the message was sent. But

27

4 Analysis of existing approaches for POSNs

using ABE has two advantages. Firstly access control within ABE allows the author
to formulate logical relations between attributes. When the sender decides to allow a
subset of two groups (i.e. co-worker ∧ programmer), this may be accomplished with
ABE natively, while without it a new group needs to be created that only consists of
that subset of recipients. Secondly sharing to third parties whose members are unknown
to the sender (i.e. friend of a friend) is much easier to do with ABE than in a common
public key environment.

Note that ABE features have a great cost since ABE is one hundred to a thousand
times slower than RSA. The developers claim that they can minimize that overhead
through a hybrid design, which means using symmetrical keys for each group and only
using ABE operations when really needed.

The developers ported the framework to iOS. A performance measure showed on
an iPhone 1 “decryption of ABE encrypted text fragments smaller than 1KB takes
approximately 0.254 seconds”.

A problem is revocation: If a user is moved out of a group this means giving all
remaining users a new key, which is, depending on the group size, a computational
overhead. The removed user is still able to decrypt already existing files.

28

4 Analysis of existing approaches for POSNs

Table 7: Criteria evaluation of Persona

Mandatory Requirements

Criterion Outcome

End to end encryption Yes

Data integrity Yes

Usability Medium

Mobile friendly Yes

Consistent Depends on underlaying storage service

Available Storage Service needs to be always online

Optional Requirements

Criterion Outcome

Open Source No

Distributed Multiple servers

Obfuscated Social Graph Unknown

Identity validation No

29

4 Analysis of existing approaches for POSNs

4.2.5 The social network scheme proposed by Sun, Zhu, and Fang

Features
Sun, Zhu and Fang propose a POSN scheme [34] with a revocation concept. A data owner
defines access groups like ‘co-workers’ or ‘family’ and which data sets are accessible for
their users. The access granularity of those groups may be configured by the data
owner. The group management is organized in a dynamic way, allowing the data owner
to constantly add or remove users from a group without the need to create new keys for
everyone.

The scheme relies on Public key encryption with keyword search, broadcast encryption
(BE) and identity-based cryptography (IBC). Keywords are stored in an encrypted way
on the server, allowing users to send encrypted keywords to the server and search for
them in encrypted texts (Trapdoors). This means users may search for certain attributes
server side without the need to download and encrypt every cipher text.

Parallel to Persona, a data owner may publish a post before adding recipients to the
matching groups. The recipient group is fixed, not the members of that group. Unlike
Persona, a user that was revoked is not able to decrypt any post anymore. However, if
the users recorded keywords and the corresponding trapdoors they may search for those
keywords and the server would even return new documents. Of course those users would
be unable to decrypt those posts.

Evaluation
In contrast to Persona that uses ABE, IBC has easier revocation management. In ABE
a user is part of many groups and a message is encrypted for a specific set of groups,
joined with logical operators. If a group membership is revoked, the group owner needs
to generate a large set of new keys. In IBC however, each user has only one unique key
pair. Since the developers implemented BE, revocation only results in generating one
new key. ABE has the feature that a post only needs to be encrypted once, where IBC
needs to do multiple encryptions for each role (members of certain groups). The authors
claim that this is not a big problem since an OSN user doesn’t have much different
groups and private data relies on a symmetrical and therefore fast encryption.

The scheme divides parties into trustworthy and untrustworthy ones. It assumes that
the POSN provider and credential authority is a trustworthy party, whereas data is saved
on an untrusted third party. It may be a wrong idea to trust POSN providers and may
be that a malicious providers is able to breach the system security.

30

4 Analysis of existing approaches for POSNs

Table 8: Criteria evaluation of Sun et al.

Mandatory Requirements

Criterion Outcome

End to end encryption Yes

Data integrity Yes

Usability Medium to High

Mobile friendly No

Consistent Depends on third party

Available Depends on third party

Optional Requirements

Criterion Outcome

Open Source No

Distributed No

Obfuscated Social Graph Unknown

Identity validation No

31

4 Analysis of existing approaches for POSNs

4.3 Enhancing privacy within existing OSNs

4.3.1 flyByNight

Features
flyByNight [35] was a prototype of a Facebook app to encrypt messages. By the time
this paper was written it was not accessible anymore, but it showed an important try
on how to build encryption into Facebook.

flyByNight allows users to send one to one and one to many messages. All encryp-
tion and decryption takes place within the client so that Facebook only sees encrypted
messages. The application uses an asymmetrical encryption via elgamal. Users may
generate a key pair in the flyByNight app interface. The key is symmetrically encrypted
with a chosen password and stored on the flyByNight servers.

The app was developed with usability in mind. The user is only required to remember
one additional password and may use the service from other computers or even mobile
devices (as long as they visit the Facebook desktop website). Encryption process and
key generation take place solely in JavaScript, meaning no additional software or specific
knowledge is required.

A Facebook user may have hundreds of contacts. As the developers realized that
encrypting the message for every recipient takes too much time, they built a proxy
cryptography server. This means the sender needs to encrypt the message only once and
the proxy server helps encrypting the message for a specific recipient on demand. The
proxy server is never able to decrypt the message by itself, therefore the application still
uses end to end encryption. This proxy server may bring scalability issues when more
users access it.

Within the app interface, the user selects one or many recipients from contacts using
flyByNight. The application then generates the cipher text. A recipient may decrypt
the message in the same way via the app interface.

Evaluation
One big problem with the app is that it is a Facebook app and therefore limited to
the app bounds. It creates a separated interface to interact with and therefore is not
embed into the main Facebook page, meaning the user always needs to switch between
Facebook and the app. This is a big usability trade off, it is in question if users would
still use it.

Because of how Facebook apps are technically realized, all communication to fly-
ByNight is proxied by Facebook, giving Facebook the ability to attack the system. The
developers argue that “using flyByNight to send information through Facebook may en-
dow that information with legal privacy protection that compensates for its technical
vulnerability”. As a safeguard the developers propose a browser plugin that may verify
the JavaScript code so that security attacks would become immediately apparent to the

32

4 Analysis of existing approaches for POSNs

user. This does, however, not prevent possible attacks by manipulating keys within the
database since database communication is proxied, too. In addition, the overhead of a
plugin to check for security attacks would decrease usability even more.

flyByNight is not able to encrypt images, which today is a big disadvantage. The
developers argued it was not possible to load images from disk into JavaScript, but today
this is possible. It may, however, have performance issues since images are significantly
larger than text messages.

Table 9: Criteria evaluation of flyByNight

Mandatory Requirements

Criterion Outcome

End to end encryption Yes; Not images; Manual key validation

Data integrity Yes

Usability Low

Mobile friendly No

Consistent Depends on underlaying OSN

Available flyByNight server must be always online

Optional Requirements

Criterion Outcome

Open Source No

Distributed No

Obfuscated Social Graph No

Identity validation Handled by OSN

33

4 Analysis of existing approaches for POSNs

4.3.2 NOYB

Features
NOYB [36], short for None Of Your Business, is a Firefox plugin with the approach
of encrypting Facebook user profiles while being undetected by the OSN. Instead of
encrypting the profile data of a user, it is mixed with the corresponding data of other
users. NOYB splits a user profile in so called atoms. All atoms of the same class
(for example the given name or the date of birth) are pseudo randomly mixed between
the users, so that each user gets a “random” profile with legitimate data, making the
obfuscation hard to track for the social network. If atoms were simply swapped, people
would be able to know other user’s atoms. That’s why NOYB uses another approach:
There are well known append-only dictionaries of atoms. When encrypting an atom the
index of the atom is symmetrically encrypted, resulting in another pseudo random index.
The cipher text is the atom at that new index. Friends are able to undo the encryption
and therefore may see the original atom.

Evaluation
The basic aspect of mixing up information in such a way that the OSN cannot detect it
easily is an approach not seen in much POSNs. The development team took measures
to increase security through saving dummy data into the dictionary and creating dic-
tionaries dependent on certain atoms like gender or age so that interests become more
probable. Still the efficiency of the encryption scales with user count, therefore a smaller
user base exploits more information about its users.

The application mixes up information like favorite books or TV shows. Whilst this
works when a friend visits the profile and is able to reverse the process, it also means the
Facebook news feed shows information on random topics. Changing the user’s profile
results in an impaired news feed and therefore reduces usability drastically.

Key exchange is not managed by the system, resulting in less usability and a bigger
chance of user errors due to insecure communication channels. Another missing part is
the encryption or obfuscation of messages. It is not enough to only encrypt user profiles
and keep their messages and status updates in plain text, because the information in such
messages must be considered at least as important as profile information. Since every
atom must be saved within the dictionary, encrypting those message would increase the
size of the dictionary very fast and it would result in making every private message public
to everyone. The dictionaries may have scalability issues when the user base grows and
serve as a single point of failure.

34

4 Analysis of existing approaches for POSNs

Table 10: Criteria evaluation of NOYB

Mandatory Requirements

Criterion Outcome

End to end encryption Only profile; Manual key exchange

Data integrity No

Usability Low

Mobile friendly No

Consistent Depends on underlaying OSN

Available NOYB servers need to be always online

Optional Requirements

Criterion Outcome

Open Source No

Distributed No

Obfuscated Social Graph No

Identity validation No

35

4 Analysis of existing approaches for POSNs

4.3.3 FaceCloak

Features
FaceCloak [37] gives users the ability to shield their data from other users or the OSN
provider. FaceCloak has been prototypically implemented as a FireFox plugin and han-
dles only Facebook accounts.

The user may turn encryption on or off for each information piece. To turn it on the
user prepends the text with markers (implemented as ‘@@’), for drop down menus the
application injects a second menu.

FaceCloak relies on a third party server that holds cipher texts. Each user may
chose their third party server to store their data. There is a server provided by the
authors and users may create a server using an open PHP / mySQL implementation.
All communication handled by that server relies on TLS, therefore a user needs to have
an SSL certificate.

When users post information, the application intercepts and encrypts marked data,
sends it to the third party server, and posts fake data to the OSN. Decryption is han-
dled in the same manner: FaceCloak receives the cipher text from the third party server,
decrypts the post, and injects it into the site. Fake Data is generated by internal dictio-
naries (for surnames and names) and Wikipedia.

Each account generates a master key and a personal index key, which both are shared
with the contacts. The master key is used for symmetrical encryption, decryption, and
integrity validation of posts. The third party server stores information in a key/value
store, where the key is calculated through a hash over the personal index key and an
identifier for the information. The value is the encrypted information and a MAC for
integrity validation.

If users update their own profile, they use their own keys, while when they post a
message to a friend’s wall they use that friend’s key. This ensures that the friends of a
friend that are not mutual may still decrypt the data.

For writing operations to the third party server the clients use a personal access key
that is not shared with anybody else. This prevents contacts of a user to publish in the
user’s name and is a counter measure to DDOS attacks.

Encryption is implemented via AES-128 and SHA1 for indices, validation is imple-
mented via a message authentication code.

Evaluation
Prepending input fields with ‘@@’ is unusual, feels like a hack and decreases usability.
It would have been a good idea to inject a drop down where the user may select the
visibility instead.

Parallel to NOYB, FaceCloak generates seemingly valid data for the OSN in order
to remain undetected. While NOYB only encrypted profile data, FaceCloak encrypts
messages as well, which is a very important feature. But it has some disadvantages, too.

36

4 Analysis of existing approaches for POSNs

Key distribution is currently handled via email. Since emails are sent unencrypted,
this is a major security risk. Another problem is the use of symmetric keys since it also
means that revocation of a user is only possible by creating a new key and decrypting
and encrypting every single message again. In addition a malicious or compromised user
may share a key from a specific contact and therefore nullify the security of said contact,
while the attacker’s security remains intact. As a comparison in a public key scenario
publishing the private key compromises the attacker’s security, publishing a session key
only affects a single message.

Note that revocation is currently not implemented in the prototype. Also a user can
only publish to all of his contacts at once, there is no possibility to create multiple groups
of recipients and share content only to a specific group. Therefore all contacts would be
able to decrypt personal messages if Facebook made the message visible to them.

Since every write is saved with a personal access key and a change of that data is not
possible without the correct key, users cannot change texts other user posted on their
wall. They can, however, delete them through Facebook features. It is unclear on how
the third party server is informed that a post was removed.

Because the OSN provider shouldn’t be able to identify FaceCloak users, fake data
is not marked in any way. To check if data is encrypted, the reader needs the two
shared keys, so the OSN cannot identify FaceCloak at all, which is a nice feature, very
similar to NOYB. But this mechanic also means that the application never knows what
information is fake and what is real. So it calculates the index for every information and
tries to download it from the third party server. This behavior produces much unneeded
traffic and may slow down the application.

Since cipher texts are saved onto the third party application server and the server
doesn’t have the keys, it cannot read the data. It can’t manipulate the data either,
since FaceCloak implemented a validation mechanism. It doesn’t even know what users
it hosts, since the indices are hashed. The server may, however, perform a replay attack
and replace content by old content that was legitimate before. The impact of such an
attack is believed to be low. Another possible attack is a timing attack. This would lead
to an identification of FaceCloak users, but not leak any data.

The latest FaceCloak implementation is 5 years old and doesn’t work anymore.

37

4 Analysis of existing approaches for POSNs

Table 11: Criteria evaluation of FaceCloak

Mandatory Requirements

Criterion Outcome

End to end encryption Yes; Unsecure key distribution

Data integrity Only for author

Usability Medium

Mobile friendly No

Consistent Depends on underlaying OSN

Available FaceCloak server needs to be always online

Optional Requirements

Criterion Outcome

Open Source Yes

Distributed No

Obfuscated Social Graph No

Identity validation Handled by OSN

38

4 Analysis of existing approaches for POSNs

4.3.4 Scramble

Features
Scramble [38] is a Mozilla Firefox add-on allowing to encrypt and decrypt data. It is not
bound to a specific OSN and may be even used on other websites. It uses OpenPGP
with a simple user front end, allowing to generate keys, encrypt and decrypt messages,
and synchronize the key chain with OpenPGP key servers. Encryption and decryption
happens client side within the browser, supported by a Java runtime. For usability
reasons, the developers decided to not use the OpenPGP web of trust and rather let the
user decide to trust a specific key.

The development team claims to work on a chrome extension in order to reach more
users.

Since cipher texts are longer than their plain texts and there are OSNs like Twitter
with a very limited character count, the developers added an optional service called
TinyLink which saves the cipher texts and returns a link to post on the OSN.

For access control users may add the public keys of their contacts to groups. While
encrypting a message they can then select groups and contacts as recipients.

Evaluation
The installation of the browser plugin is not as trivial as one might think. The extension
itself is installed quickly, but users are required to install JCEP which is not a trivial
thing to do. If not configured properly, the add-on shows short cryptic error messages
to the user, making it hard to track what is missing.

In order to paste an encrypted message, the user must copy and paste the plain text
into the interface and select recipients. If the cipher text is too long for the OSN the
users then past the content into the TinyLink service and finally send the link via the
OSN, where they should configure the same recipients if possible. The recipients then
click on the link, paste the cipher text into the extension GUI, enter their password and
then are able to view the plain text. It should be obvious that this process takes very
long time and decreases usability drastically.

And what happens to users who don’t use Scramble? If the sender only sent it to users
using Scramble (which takes him more time), it would be fine. If not, maybe because
the OSN doesn’t provide status updates to a limited group of recipients, the recipients
would see encrypted texts or links to encrypted texts. If they were unaware of Scramble,
this would be very confusing.

39

4 Analysis of existing approaches for POSNs

Table 12: Criteria evaluation of Scramble

Mandatory Requirements

Criterion Outcome

End to end encryption Yes; No key distribution

Data integrity Yes

Usability Low

Mobile friendly No

Consistent High

Available High

Optional Requirements

Criterion Outcome

Open Source Planned

Distributed No

Obfuscated Social Graph No

Identity validation Handled by OSN

40

5 Proposed architecture for POSNs

4.4 Interim result

As an interim result, a table with all the twelve analyzed projects may be found in
Appendix A. In order to provide a quick overview, each cell is colored, where green
means the requirement is fully matched, yellow means that it is nearly fulfilled or that
there are small drawbacks, orange means that the requirement is matched poorly, red
means the requirement is not matched at all, and blue means it is unclear, dependent
on other software, or valued to be neutral.

In section 2, RQ 3a asked if there is a POSN that fulfills the requirements defined in
section 3. The evaluation of the given projects showed that there is neither a finished
POSN nor a framework to fulfill our criteria and therefore the answer is No.

RQ 3b asked how to approach a POSN that fulfills the requirements. This thesis will
now combine the defined requirements from section 3 with techniques observed in section
4 and propose a reference architecture.

5 Proposed architecture for POSNs
This architecture is a proposition on how to accomplish a POSN to fulfill the require-
ments. It is not intended to represent the only way on how to build a POSN, but an
idea for a reference architecture.

Type of application

The analyzed projects may be categorized roughly into two groups. The first consists
of applications that are built on top of existing OSNs (flyByNight, NOYB, FaceCloak,
Scramble) and the second group consists of standalone POSNs or frameworks to build
such (diaspora, SafeBook, PeerSoN, FOAF, Backes et al., Lockr, Persona, Sun et al.).
Which one is better?

Attracting users with a freshly built, empty POSN is hard, because users know that
their contacts aren’t part of the community yet. In contrast, building a POSN on top
of an already existing OSN means that users don’t need to register to a new OSN. But
building on top of an OSN without the support of the owners means working against
their will and probably breaching their terms and conditions. As seen at Persona, fly-
ByNight and NOYB, the application may break when the OSN updates its software or
permissions, probably meaning that users are unable to communicate or use the POSN.
In consequence, such applications need to be reevaluated periodically. If it breaks it
needs to be fixed very fast in order to keep its availability.

Because the analyzed approaches to build privacy into existing OSNs either decreased
usability, don’t work anymore today, or both, this thesis proposes to build a standalone
application. To ease switching to the new POSN, it should be considered to implement
an importer that transfers data from existing OSNs into the new application.

41

5 Proposed architecture for POSNs

End to end encryption and data integrity

This paper defined end to end decryption as mandatory, therefore it needs to be imple-
mented.

NOYB and FaceCloak obfuscated their encryption in order to be untraceable by the
OSN provider. Since this thesis proposes to implement a standalone application, this is
not required.

The analyzed projects used various types of encryption, namely symmetrical encryp-
tion, public/private key encryption, attribute-based encryption, identity-based encryp-
tion, and broadcast encryption. Symmetrical encryption, as seen in FaceCloak, is the
fastest of them. But the analysis of FaceCloak already mentioned that key management,
creating groups, revocation, and preventing malicious sharing of keys create big prob-
lems with symmetrical keys. Therefore it is a bad idea to use symmetrical encryption
only. Instead a hybrid encryption as seen in Persona, the API from Sun et al., and
FaceCloak is advised.

Current OSNs give the user the possibility to search. Implementing an encryption
that allows an encrypted search like Sun et al. did may improve the POSN in near
future. But thinking about how mobile devices will develop, when a mobile device is
able to cache more information on disk and provide an offline search, this may become
obsolete. Therefore the encrypted search is not a proposed main feature.

Because users are already familiar with the usage of groups, it is recommended to im-
plement an encryption that works in the same way. As elaborated this may be achieved
using different techniques: Persona uses ABE, Sun et al. use IBC, and in section 4.2.4
this paper stated that the behavior may be achieved using common asymmetrical en-
cryption, too. To evaluate what techniques to use, an implementations of each possibility
and a cross platform performance measure is needed. This is enough work for another
paper and therefore cannot be discussed any further.

Key distribution needs to be handled by the POSN in order to prevent distribution via
insecure communication channels. Key validation needs to be easy, this thesis proposes
to use QR codes to give the users the possibility to validate keys easily and securely. If
a user validated some keys manually and those trusted users validated some other keys,
a strong verification trust chain can be built and used. In the same way, users should be
able to untrust certain keys, so that impostors can be spotted by their friends. When a
user reads a friend request from an unknown identity he can then be presented with a
trust or untrust chain.

A client always needs to check data integrity. The analyzed projects use asymmetrical
signatures and message authentication codes. Since both techniques are valid crypto-
graphic approaches, this thesis doesn’t propose one exactly. The user should always be
notified if data integrity validation produces a warning or an error.

42

5 Proposed architecture for POSNs

Usability
The programmer cannot expect the user to know cryptographic details. All errors need
to be explained in a simple and short wording. The application needs to be easy to
use and work flows need to be efficient. As a negative example Scramble required the
user to constantly use bowser menus and manually coordinate a third party TinyLink
service. Another negative example is flyByNight that instead of integrating in the known
Facebook work flow, it created a second interface to encrypt and decrypt data.

A diaspora pod may only be set up by a person with administrative skills and/or
dedication. This is unacceptable. If the user is required to install something it should
be straight forward and easy. If for example the application needs a database, a web
server, and an SSL certificate, everything should come within the installation package
or should be created automatically. The database and a web server may be installed
and configured automatically. An SSL certificate may be generated and signed on the
machine, possibly using a free CA.

The application should be transparent. Users should understand easily who is able to
read their data and how to give or revoke access. A good example is the ABE encryption
used in Persona that uses already known group management structures and maps it into
cryptographic features.

Mobile Friendly
Only PeerSoN and Persona were implemented mobile friendly, where only Persona took
performance tests for mobile. The mobile encryption times were acceptable even though
the performance tests were run on hardware that is completely outdated today. As
already stated, mobile devices are still developing rapidly in performance, therefore
power should not be a problem in the future. But using browser plugins like FOAF,
Lockr, NOYB, FaceCloak, and Scramble do is considered a bad idea since they are not
runnable on mobile devices.

This thesis proposes to use techniques that are available on all platforms like JavaScript,
that are natively supported through cross platform libraries (such as basic asymmetrical
encryption) or to implement new libraries into the required platforms.

Today mobile clients cannot participate in a peer to peer environment like desktop
computers can. Currently a mobile client always needs a desktop computer to rely on,
but in the future this may change.

Distribution
Besides completely centralized projects, this paper presented two types of distribution.
The first one is a completely distributed peer to peer system, where every user’s machine
connects and synchronizes with the network. The second one distributes the user data
onto different servers, where every server may hold multiple users.

43

5 Proposed architecture for POSNs

It might be easier to distribute the content onto different servers that are always online
without creating a peer to peer network. This would help mobile clients because they
may connect to those servers without the need to be part of the peer to peer network.

Since this thesis proposes to implement an end to end encryption, it is not necessary
to distribute the content. Therefore it is not proposed if and how to distribute content.

Consistency and Availability

Except for SafeBook and PeerSoN, all discussed projects were highly consistent or relied
on the consistency of their underlaying existing OSN. This is for a simple reason: All
of those projects were either not distributed at all, or split the data in such a way that
one server always handles certain data. If that is the case, the servers must be highly
available.

This thesis didn’t specify if a POSN should be distributed. If it was not, this would
result in high consistency and high availability, but also in low scalability and high cost.

SafeBook and PeerSoN are distributed in a peer to peer manner and therefore need
mechanics to regulate consistency and availability.

In SafeBook the data is cloned onto machines of close friends, so that if the data
owner is offline, readers may contact those mirrors. Consistency and availability are
highly dependent on the number of mirrors and on how clients are selected to become
mirrors. Considering that close friends are normally geographically close to each other,
it may occur that the mirrors are offline at the same time as the data owner, which
would mean the data is not available at all.

In SafeBook real time interactions like the chat function are disabled if the user’s
machine is offline, which increases consistency, but decreases availability. But availability
needs to be high, it is not acceptable that a messaging function stops working if the
recipient is offline. If the messages were sent to a clone, there may be consistency issues.
In PeerSoN a DHT serves as a puffer to cache messages if the user’s machine is offline.
As long as the DHT is always online, this increases both, availability and consistency.
Therefore if the POSN was heavily distributed it may be a good idea to add such a
puffer. Which puffer to use is in question since OpenDHT did not work well. This needs
to be evaluated in other prototypes.

Obfuscated Social Graph

Even if content is encrypted, POSN providers may learn information through communi-
cation meta data. Obfuscating the Social Graph is a good concept to limit the possibility
of those security breaches.

If the POSN was distributed in a peer to peer way, an attacker would need to monitor
meta data from every client, which makes such an attack very complex. Therefore
obfuscating the Social Graph in a peer to peer network may be omitted, but still is a

44

5 Proposed architecture for POSNs

good privacy improvement. A good example is SafeBook which obfuscates the Social
Graph using matryoshkas, giving each core anonymous entry points and communication
routes. In the same manner an onion router or some other anonymized channel may be
used, as seen in Backes et al.

If the POSN is not distributed in a peer to peer manner, obfuscating the social graph
should be considered an important feature. As seen in Backes et al. and Lockr, zero-
knowledge proofs are a good way to start. Additionally, Backes et al. give each user
the possibility to create different pseudonyms in order to become more untraceable to
eavesdropper.

This thesis proposes to implement zero-knowledge protocols and to evaluate if some
anonymized routing is possible and fast enough.

Optional identity validation
This thesis already proposed key validation mechanics. They can be applied onto identity
validation easily. Trusting and untrusting chains based on real life, QR code validation,
and transparency for the users regarding trust chains allow the users to validate both,
keys and identity, without a centralized authority.

Further this thesis proposes to build a transparent trusting network where each user
may approve or disprove other identities, perform out of band validation such as validat-
ing checksums or photographing QR codes, and where each time a user interacts with
an unknown party a trusting chain or untrusting chain is presented. The user should be
encouraged to validate his close contacts.

45

6 Conclusion

6 Conclusion
This thesis showed how critical missing privacy in social networks, especially in Facebook,
is. In order to protect the user from abuse, a POSN must be developed. This thesis
defined six mandatory and five optional requirements to build such a POSN. It analyzed
twelve potential POSNs generally and in regard to these requirements. It showed that
none of those projects was able to fulfill these requirements and therefore proposed
structures and techniques based on these requirements for an architecture to build a
POSN.

There are still multiple propositions for some requirements, and therefore no “absolute
architecture” was found. For future work the remaining propositions can be further
analyzed regarding scalability, cost, performance, cross platform implementations, and
implementation expense.

46

Appendices

47

A
.Evaluation

table

A. Evaluation table

Mandatory Requirements

Criteri-
on

Diaspo-
ra

Safe-
Book

Peer-
SoN

FOAF Backes
et al.

Lockr Persona Sun et
al.

flyBy-
Night

NOYB Face-
Cloak

Scram-
ble

End
to end
encryp-
tion

No Yes;
Trust
chains
built on
real life
trust

Yes; Key
distri-
bution
is not
imple-
mented

No Yes; A
public
key in-
frastruc-
ture is
needed

No Yes Yes Yes; Not
images;
Manual
key vali-
dation

Only
profile;
Manual
key ex-
change

Yes;
Unse-
cure key
distribu-
tion

Yes;
No key
distribu-
tion

Data
in-
tegrity

No Yes Yes No Depends
on un-
derlay-
ing key
infras-
tructure

No Yes Yes Yes No Only for
author

Yes

Usabili-
ty

Usage:
Easy
Admin-
istra-
tion:
Hard

Unknown Unknown Low Unknown Unknown Medium Medium
to High

Low Low Medium Low

Mobile
friendly

Mobile
opti-
mized
Web
Page.
No na-
tive
applica-
tion

No Yes No Unknown No Yes No No No No No

48

A
.Evaluation

table
. . . Mandatory Requirements

Criteri-
on

Diaspo-
ra

Safe-
Book

Peer-
SoN

FOAF Backes
et al.

Lockr Persona Sun et
al.

flyBy-
Night

NOYB Face-
Cloak

Scram-
ble

Consis-
tent

High Unknown;
eventual
consis-
tent?

Messages
are de-
livered
instantly
or even-
tually

High High High Depends
on
under-
laying
storage
service

Depends
on third
party

Depends
on
under-
laying
OSN

Depends
on
under-
laying
OSN

Depends
on
under-
laying
OSN

High

Available Pod
needs
to be
always
online

Not
when
host and
close
friends
are
offline

Medium
to High

Servers
needs
to be
always
online

Unknown;
low to
medium

Storage
server
needs
to be
always
online

Storage
Service
needs
to be
always
online

Depends
on third
party

flyBy-
Night
server
must be
always
online

NOYB
servers
need
to be
always
online

Face-
Cloak
server
needs
to be
always
online

High

Optional Requirements

Criteri-
on

Diaspo-
ra

Safe-
Book

Peer-
SoN

FOAF Backes
et al.

Lockr Persona Sun et
al.

flyBy-
Night

NOYB Face-
Cloak

Scram-
ble

Distri-
buted

Multiple
servers

P2P P2P Multiple
servers

Multiple
servers

Multiple
servers

Multiple
servers

No No No No No

Obfus-
cated
Social
Graph

Pod
Admin-
istrator
sees
contacts

Yes Unknown No Yes Yes Unknown Unknown No No No No

Open
Source

Yes No No No No No No No No No Yes Planned

Identity
valida-
tion

No Not na-
tively

Not na-
tively

Not na-
tively

Explicitly
not in-
tended

Handled
by OSN

No No Handled
by OSN

No Handled
by OSN

Handled
by OSN49

B. List of figures and tables

B. List of figures and tables

List of Figures
1 A Matryoshka . 15

List of Tables
1 Criteria evaluation of Diaspora . 14
2 Criteria evaluation of Safebook . 17
3 Criteria evaluation of PeerSoN . 19
4 Criteria evaluation of FOAF . 21
5 Criteria evaluation of Backes et al. 23
6 Criteria evaluation of Lockr . 26
7 Criteria evaluation of Persona . 29
8 Criteria evaluation of Sun et al. 31
9 Criteria evaluation of flyByNight . 33
10 Criteria evaluation of NOYB . 35
11 Criteria evaluation of FaceCloak . 38
12 Criteria evaluation of Scramble . 40
A. Evaluation table . 48

50

C. References

C. References
[1] D. M. Boyd and N. B. Ellison, “Social network sites: Definition, history, and schol-

arship,” Journal of Computer-Mediated Communication, no. 13, pp. 210–230, 2008.

[2] J. Cannarella and J. A. Spechler, “Epidemiological modeling of online social network
dynamics,” arXiv preprint arXiv:1401.4208, 2014.

[3] Statista, “Leading social networks worldwide as of april 2016, ranked by number
of active users (in millions),” April 2016. [Online]. Available: http://www.statista.
com/statistics/272014/global-social-networks-ranked-by-number-of-users/

[4] facebook. (2016, Apr.) Data policy. [Online]. Available: https://www.facebook.
com/about/privacy

[5] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel, “You are who you
know: Inferring user profiles in online social networks,” Max Planck Institute for
Software Systems, Feb. 2010.

[6] M. Kosinski, D. Stillwell, and T. Graepel, “Private traits and attributes are pre-
dictable from digital records of human behavior,” PNAS, vol. 110, no. 15, pp. 5802–
5805, 2013.

[7] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A Practical Attack to De-
anonymize Social Network Users,” in IEEE Symposium on Security and Privacy,
2010, pp. 223–238.

[8] C. Sun, P. S. Yu, X. Kong, and Y. Fu, “Privacy preserving social network publication
against mutual friend attacks,” Transactions on Data Privacy, no. 7, pp. 71–97,
2014.

[9] B. Debatin, J. P. Lovejoy, A.-K. Horn, and B. N. Hughes, “Faceboook and online pri-
vacy: Attitudes, behaviours, and unintended consequences,” Journal of Computer-
Mediated Communication, no. 15, pp. 83–108, 2009.

[10] C. Bauer, J. Koronuvska, and S. Spiekermann, “On the value of information - what
facebook users are willing to pay,” ECIS 2012 Proceedings, Paper 197.

[11] Statista, “Facebook’s revenue and net income from 2007 to 2015 (in million u.s.
dollars),” 2016. [Online]. Available: http://www.statista.com/statistics/277229/
facebooks-annual-revenue-and-net-income/

[12] K. M. Heussner, “Woman loses benefits after posting facebook pics,” abcnews,
2009. [Online]. Available: http://abcnews.go.com/Technology/AheadoftheCurve/
woman-loses-insurance-benefits-facebook-pics/story?id=9154741

51

http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
http://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.facebook.com/about/privacy
https://www.facebook.com/about/privacy
http://www.statista.com/statistics/277229/facebooks-annual-revenue-and-net-income/
http://www.statista.com/statistics/277229/facebooks-annual-revenue-and-net-income/
http://abcnews.go.com/Technology/AheadoftheCurve/woman-loses-insurance-benefits-facebook-pics/story?id=9154741
http://abcnews.go.com/Technology/AheadoftheCurve/woman-loses-insurance-benefits-facebook-pics/story?id=9154741

C. References

[13] C. Lunt, “Authorization and authentication based on an individual’s social net-
work,” U.S. Patent 9,100,400, 2015.

[14] D. Kaye, “Promotion and protection of all human rights, civil, political, economic,
social and cultural rights, including the right to development.” Human Rights
Council, 2015.

[15] J. D’Onfro, “Here’s how much time people spend on facebook per
day,” Aug 2015. [Online]. Available: http://www.businessinsider.com/
how-much-time-people-spend-on-facebook-per-day-2015-7?IR=T

[16] K. Dreyer, “Mobile internet usage skyrockets in past 4 years to overtake desktop as
most used digital platform,” comScore, Tech. Rep., 2015.

[17] A. Yarmula, “Strong consistency in manhatten,” May 2016. [Online]. Available:
https://blog.twitter.com/2016/strong-consistency-in-manhattan

[18] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus, S. Kumar, and
W. Lloyd, “Existential consistency: Measuring and understanding consistency at
facebook,” University of Southern California, Facebook, Inc., Tech. Rep., October
2015.

[19] H. Jaap-Henk and B. Jacobs, “Increased security through open source,” Communi-
cations of the ACM, vol. 50, no. 1, pp. 79–83, January 2007.

[20] B. Witten, C. Landwehr, and M. Coloyannides, “Does open source improve system
security?” IEE Software, vol. September/October 2001, pp. 57–61.

[21] C. Payne, “On the security of open source software,” Info Systems J, no. 12, pp.
61–78, 2002.

[22] J. Leber. (2012, May) The biggest cost of facebook’s
growth. [Online]. Available: https://www.technologyreview.com/s/427941/
the-biggest-cost-of-facebooks-growth/

[23] A. Shakimov, A. Varshavsky, L. P. Cox, and R. Cáceres, “Privacy, cost, and avail-
ability tradeoffs in decentralized osns,” SIGCOMM WOSN, Tech. Rep., 2009.

[24] Diaspora. [Online]. Available: https://diasporafoundation.org

[25] Federation protocol overview, diaspora. [Online]. Available: https://wiki.
diasporafoundation.org/Federation protocol overview

[26] Diaspora blog. [Online]. Available: https://blog.diasporafoundation.org/

52

http://www.businessinsider.com/how-much-time-people-spend-on-facebook-per-day-2015-7?IR=T
http://www.businessinsider.com/how-much-time-people-spend-on-facebook-per-day-2015-7?IR=T
https://blog.twitter.com/2016/strong-consistency-in-manhattan
https://www.technologyreview.com/s/427941/the-biggest-cost-of-facebooks-growth/
https://www.technologyreview.com/s/427941/the-biggest-cost-of-facebooks-growth/
https://diasporafoundation.org
https://wiki.diasporafoundation.org/Federation_protocol_overview
https://wiki.diasporafoundation.org/Federation_protocol_overview
https://blog.diasporafoundation.org/

C. References

[27] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving online
social network leveraging on real-life trust,” IEE Communications Magazine, pp.
94–101, December 2009.

[28] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peerson: P2p social network-
ing: Early experiences and insights,” in Proceedings of the Second ACM EuroSys
Workshop on Social Network Systems, ser. SNS ’09. New York, NY, USA: ACM,
2009, pp. 46–52.

[29] C.-m. A. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and T. Berners-Lee, “Decen-
tralization: The future of online social networking,” W3C, 2008.

[30] M. Backes, M. Maffei, and K. Pecina, “A security api for distributed social net-
works.” in NDSS, vol. 11, 2011, pp. 35–51.

[31] I. Damgard, “On σ-protocols,” Lecture notes for CPT, 2002.

[32] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman, “Lockr: better privacy
for social networks,” in Proceedings of the 5th international conference on Emerging
networking experiments and technologies. ACM, 2009, pp. 169–180.

[33] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin, “Persona: An
online social network with user-defined privacy,” SIGCOMM Comput. Commun.
Rev., vol. 39, no. 4, pp. 135–146, Aug. 2009.

[34] J. Sun, X. Zhu, and Y. Fang, “A privacy-preserving scheme for online social networks
with efficient revocation,” in INFOCOM, 2010 Proceedings IEEE, March 2010, pp.
1–9.

[35] M. M. Lucas and N. Borisov, “Proceedings of the 7th acm workshop on privacy
in the electronic society,” in flyByNight: Mitigating the Privacy Risks of Social
Networking, 2008.

[36] S. Guha, K. Tang, and P. Francis, “Noyb: Privacy in online social networks,” in
Proceedings of the First Workshop on Online Social Networks, ser. WOSN ’08. New
York, NY, USA: ACM, 2008, pp. 49–54.

[37] W. Luo, Q. Xie, and U. Hengartner, “Facecloak: An architecture for user privacy on
social networking sites,” in Computational Science and Engineering, 2009. CSE’09.
International Conference on, vol. 3. IEEE, 2009, pp. 26–33.

[38] F. Beato, M. Kohlweiss, and K. Wouters, “Scramble! your social network data,”
in Privacy Enhancing Technologies: 11th International Symposium, PETS 2011,
Waterloo, ON, Canada, July 27-29, 2011. Proceedings, 1st ed., ser. Lecture Notes in
Computer Science 6794 Security and Cryptology, S. Fischer-Hübner and N. Hopper,
Eds. Springer-Verlag Berlin Heidelberg, 2011, pp. 211–225.

53

	Motivation
	Research questions
	Requirements for POSNs
	Mandatory requirements for POSNs
	Optional requirements for POSNs

	Analysis of existing approaches for POSNs
	POSN projects
	Diaspora
	Safebook
	PeerSoN

	Existing Frameworks for POSNs
	FOAF
	A Security API by Backes et al.
	Lockr
	Persona
	The social network scheme proposed by Sun, Zhu, and Fang

	Enhancing privacy within existing OSNs
	flyByNight
	NOYB
	FaceCloak
	Scramble

	Interim result

	Proposed architecture for POSNs
	Conclusion
	Appendices
	A. Evaluation table
	B. List of figures and tables
	C. References

